Oscillatory Radial Solutions of Semilinear Elliptic Equations
نویسندگان
چکیده
منابع مشابه
Uniqueness of Radial Solutions of Semilinear Elliptic Equations
E. Yanagida recently proved that the classical Matukuma equation with a given exponent has only one nite mass solution. We show how similar ideas can be exploited to obtain uniqueness results for other classes of equations as well as Matukuma equations with more general coeecients. One particular example covered is u + u p u = 0, with p > 1. The key ingredients of the method are energy function...
متن کاملRegularity of Radial Extremal Solutions of Semilinear Elliptic Equations
with φ a C∞ function with compact support in Ω. Note that Qu corresponds to the second variation of the energy associated to (1). We say that u is semi-stable if Qu(φ) ≥ 0 for all such φ. If u is bounded, this is equivalent to the nonnegativeness of the first eigenvalue in Ω of the linearized problem −∆− g′(u) of (1) at u. In [CC2] we establish sharp pointwise, L, and W k,q estimates for semi-s...
متن کاملComputation of radial solutions of semilinear equations
We express radial solutions of semilinear elliptic equations on Rn as convergent power series in r, and then use Pade approximants to compute both ground state solutions, and solutions to Dirichlet problem. Using a similar approach we have discovered existence of singular solutions for a class of subcritical problems. We prove convergence of the power series by modifying the classical method of...
متن کاملMultiple Nontrivial Solutions of Elliptic Semilinear Equations
We find multiple solutions for semilinear boundary value problems when the corresponding functional exhibits local splitting at zero.
متن کاملSingular Solutions for some Semilinear Elliptic Equations
We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1997
ISSN: 0022-247X
DOI: 10.1006/jmaa.1997.5325